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Largest Lyapunov exponent in molecular systems: Linear molecules
and application to nitrogen clusters

F. Calvo*
Laboratoire Collisions, Agre´gats, Re´activité, CNRS UMR 5589, Institut de Recherche sur les Syste`mes Atomiques et Mole´culaires

Complexes, Universite´ Paul Sabatier, 118 Route de Narbonne, F31062 Toulouse Ce´dex, France
~Received 19 March 1998!

The computation of the largest Lyapunovl exponent is carried out for a Hamiltonian system made of linear
molecules. The internal rotational degrees of freedom are described with unit vectors parallel to molecular
axes. As an application, we investigate with classical molecular dynamics the behavior ofl with internal
energy in small nitrogen clusters with 3 and 13 molecules.l sharply rises when the molecular rotational
degrees of freedom are released. However, no particular changes are observed at the solidlike-rigidlike phase
transition. Thus the amount of chaos in the cluster seems mainly governed by the orientational degrees of
freedom.@S1063-651X~98!01411-1#

PACS number~s!: 05.45.1b, 05.70.Fh, 36.40.2c
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I. INTRODUCTION

As an intermediate stage between the microscopic
bulk levels, clusters offer very peculiar chemical and phy
cal behaviors. In particular, the study of phases and ph
changes in these systems has led in the past decade to a
good understanding of how melting occurs far below
thermodynamic limit. However, most of the earliest inves
gations were carried out on simple atomic models such as
Lennard-Jones~LJ! or Morse potentials. These potentials a
ideal for carrying out numerical experiments, and the phys
of bulk fluids has been testing many theories and mod
with them. More recently, interest was granted to many ot
kinds of cluster species, ranging from ionic@1–3#, metallic
@4#, fullerenes@5,6#, water @7,8#, and many others. Up to
now, mostly Fuchs and co-workers have paid attention
van der Waals molecular clusters from the thermodyna
point of view @9–14#. These systems may exhibit very pa
ticular phases. For instance, large (SF6)N clusters (N;103)
show two distinct ordered crystal-like phases in differe
ranges of temperature@10#, whereas smaller sizes (N;10)
show featureless caloric curves@9#. Besides this solid-solid
phase transition, an embryonic solid-plastic transition w
found in nitrogen clusters@12#. The loss of orientational or
der in (N2)13 ~near 10 K! was not found in (CO2)13, even
though both clusters have identical S6 structure atT50
@12,14#.

Among the various tools and parameters proposed to
vestigate the dynamics and thermodynamics of clusters,
Lyapunov exponents and the related Kolmogorov entro
have been the subject of several reports@15–28#. Defined as
the exponential rate of convergence or divergence of ne
boring trajectories in the phase space, the Lyapunov ex
nents are a measure of the degree of chaos in a dynam
system. Since there is a large difference in rigidity and
dering between a solid and a liquid, one can expect th
numbers to be used as a probe of the solid-fluid phase t
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sition, at least in the macroscopic limit@28–30#. However,
because of relaxation phenomena, the computation
Lyapunov exponents is particularly difficult near a pha
change@29#.

Whenever a cluster melts, it may undergo an intermed
state which is a finite-size analog to the relaxation pheno
ena in bulk systems, known as dynamical coexistence@31#.
In a range of energies or temperatures, the cluster per
nently fluctuates back and forth between its solidlike a
liquidlike phases. Coexistence in clusters is not a spatial
tion related to phase separation, but is characteristic of h
melting occurs at finite size, the cluster being entirely sol
like or entirely liquidlike at a given time. Of course, as th
size increases, the temperature range of coexistence gets
rower to become finally reduced to the melting temperatu

Therefore, calculating Lyapunov exponents in clusters
not much easier than in periodic systems. Studies on b
matter have clearly demonstrated the different behaviors
Lyapunov exponents across a phase transition@28–
30,32,33#. However, the finite size of clusters and the stro
sensitivity of the phase change upon the characteristics o
potential-energy surfaces make it hard to find such gen
laws at the level of a few atoms or molecules. Rare-gas c
ters display very different variations of both the large
Lyapunov exponentl and the Kolmogorov entropyK at
melting, depending on their size@16,19–21,23,26#. Ionic
clusters may undergo several hierarchical levels of melt
@2,3#, and display original variations ofl with energy, which
have not been fully explained yet@3#. Using numerical simu-
lations on Lennard-Jones~LJ! and metallic systems and th
semianalytical results of a recent theory@34#, Mehra and
Ramaswamy@28# have investigated the respective contrib
tions of local and parametric instabilities, especially ne
melting. In small clusters containing only a few atoms, loc
instability induced by negative curvature on the potenti
energy surface is mainly responsible for chaos and expon
tiating trajectories@18,19#. In larger systems and in the bulk
parametric instability induced by the fluctuations of positi
curvature seems to dominate over the former@28#.

The method mostly used for calculating Lyapunov spec
in numerical experiments is the tangent space method in
5643 © 1998 The American Physical Society
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5644 PRE 58F. CALVO
pendently developed by Shimada and Nagishima@35# and by
Benettinet al. @36#. This method allows us to compute them
largest Lyapunov exponents$l i% of a dynamical system with
dimension n>m, given its partial differential equations
Other methods, focusing on the Kolmogorov entropy, ha
been proposed in the cluster community@16#. Up to now, the
tangent space method has been applied either to dissip
systems such as the Lorenz model@37# or to atomic or
nuclear systems@16,21–27,29,30,33# and XY-like models
@32#, among others. Most of the time, and due to the he
numerical cost involved in the computation, only the larg
exponentl1 was seeked. This is generally sufficient to ch
acterize chaoticity in a quantitative way.

The purpose of this paper is to extend the tangent sp
approach to molecular systems where not only translatio
degrees of freedom are present, but also rotational degre
freedom for each molecule. Here we focus on linear m
ecules; three-dimensional entities will be the subject o
following paper, the technique and basic equations be
rather different with respect to the linear case. The pape
organized as follows. In the next section, we develop
standard method to include molecular rotation in the com
tation of Lyapunov exponents. Then we illustrate it with t
study of phase changes in nitrogen clusters (N2)n with n
53 and 13. The results are given and discussed in Sec
Finally, we conclude and summarize in Sec. IV.

II. METHODOLOGY

Before coming to molecular systems, we start this sec
be recalling the main results of the tangent space met
used to calculate the Lyapunov exponents in a Hamilton
system. We consider a system ofn dimensionless particles
evolving through the classical Hamiltons’ equations of m
tion. In condensed form, these equations can be written
the following way:

dc

dt
5F~c!, ~1!

wherec is a 6n-vector of the phase space andF is a non-
linear function depending onc at timet. Obviously, solving
Eq. ~1! also requires an initial conditionc(0) for c. By
definition, the largest Lyapunov exponentl is the exponen-
tial rate of divergence of two initially close trajectories:

l5 lim
t→`

lim
dc~0!→0

1

t
ln

idc~ t !i
idc~0!i , ~2!

whereici5A^cuc& is a metric on the phase space and^ u &
is the associated scalar product. Of course, rigorously,l de-
pends on the choice of the initial conditionc(0) of the ref-
erence trajectory, but this difficulty can be eliminated f
ergodic Hamiltonian systems@38#. In the following, we will
assume ergodicity of our systems.

To avoid numerical difficulties due to the exponential d
vergence, we differentiate Eq.~1! to readily obtain the time
evolution of the vectordc(t) itself:

ddc

dt
5

]F

]c
dc. ~3!
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In the ‘‘tangent space,’’ one just has to follow the time ev
lution of the 6n-vectordc(t) and to renormalize it periodi-
cally. Starting withm<6n orthogonal vectors$dc i(0)%, a
Gram-Schmidt orthonormalization procedure can be use
further estimate them21 remaining largest Lyapunov expo
nents$l i% of the system. Obviously, the numerical effort
also proportionally larger. In the following, we will only
focus on the maximal exponentl5l1 .

For a Hamiltonian system interacting through the class
potential energy functionV depending on the coordinate
$r i%, 1< i<n, and with$pi% the n linear momenta and$mi%
the masses, we havec5$r i ,pi% and F(c)5$]H/]pi ,
2]H/]r i%5$pi /mi ,2]V/]r i%, so that Eq.~3! becomes

ddc

dt
5S 0 T

2M 0 D dc ~4!

with T5(Ti j ) the 3n33n dimensional diagonal matrix
whose elements are given byT3i 22,3i 225T3i 21,3i 215T3i ,3i
51/mi , M the 3n33n second derivative of the potentia
namely the Hessian matrixMi j 5]2V/]qi]qj , and0 the 3n
33n null matrix. Such an atomic system can be compu
tionally studied with the standard tools of molecular dyna
ics ~MD!. Commonly used are the Verlet algorithm@39# to
solve the equations of motion for the ‘‘physical’’ main tra
jectory, Eq.~1!, and a fourth-order Runge-Kutta scheme
solve Eq.~3! for the ‘‘fiducial’’ tangent trajectory. Let us
now come to the problem of molecular systems, more p
cisely made of linear molecules.

We consider a cluster made ofn linear molecules. Each
moleculei with massmi containsni atoms or entities, and
we assume intramolecular bonds to be of fixed length. T
molecular motion is split into the translation of the center
mass and the rotation about the center-of-mass contribut
@40#. If molecule i hassi interaction sites located on$r i

a%,
1<a<si , and if the forcef i

a acts on siter i
a , the torqueti

about the center of massr i is

ti5 (
a51

si

~r i
a2r i !3f i

a ~5!

while the total force acting onr i is f i5(af i
a . In the follow-

ing we denote byV the potential-energy function such th
f i

a52]V/]r i
a . We take advantage of the linearity of th

molecules by using the fact that both angular velocityvi and
torqueti must be perpendicular to the molecular axisei . By
writing r i

a2r i5di
aei for all i anda, we have@41#

ti5ei3gi , ~6!

where we have definedgi as

gi5 (
a51

si

di
af i

a . ~7!

Note that we can replacegi by its component perpendicula
to ei without affecting Eq.~6!, so thatti5ei3g i

' with

g i
'5gi2~gi•ei !ei . ~8!

The first-order equations of translational motion are@40#
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PRE 58 5645LARGEST LYAPUNOV EXPONENT IN MOLECULAR . . .
dr i

dt
5vi , ~9!

dvi

dt
5f i /mi , ~10!

and the equations for rotational motion are@42#

dei

dt
5ui , ~11!

dui

dt
5g i

'/Ji1g iei , ~12!

whereJi is the momentum of inertia andg i is a Lagrange
multiplier to constrain bond lengths. The numerical propa
tion of vectors$ei% and$ui% from time t2dt/2 to dt lead, via
a first-order Taylor expansion, to

g i~ t !dt522ui~ t2dt/2!•ei~ t !, ~13!

which is equal, to the same order of approximation, to

g i~ t !dt52ui
2~ t !dt. ~14!

An efficient way to solve numerically Eqs.~9!–~12! has been
proposed by Fincham@43#. It is based on a leap-frog algo
rithm which allows the direct estimation ofg i at timet using
Eq. ~13!.

To calculate the largest Lyapunov exponentl of the clus-
ter, we first define the current pointc of the phase space
c5$r i ,ei ,vi ,ui%. Similar to the atomic case, we write Eq
~9!–~12! in condensed formdc/dt5F(c). Suppose that a
variation dc(0) is imposed onc at time t50. The time
evolution ofdc is still governed by Eq.~3!, but we have to
illustrate the Jacobian]F/]c according to Eqs.~9!–~12!. We
easily see that

]F

]c
5S 0 0 1 0

0 0 0 1

A B 0 0

C D 0 E
D , ~15!

where A,B,C,D,E are 3n33n matrices to be determine
and1 is the 3n33n identity matrix. The explicit derivation
of these matrices is performed in the Appendix. As me
tioned above, it is in principle possible to follow simulta
neously the time evolution of 12n orthogonal vectors$dc i%
in order to find all Lyapunov exponents. We expect that
12n of them would be zero due to conservation of the to
energy, linear, and angular momenta~seven constants of th
motion!, but also due to the constraint of intermolecu
bond lengths (n Lagrange multipliers!.

III. APPLICATION TO SMALL NITROGEN CLUSTERS

In this section we illustrate the method formalized abo
to compute the largest Lyapunov exponent in clusters m
of 3 and 13 nitrogen molecules. The potential chosen
model the interaction between N2 molecules was previously
used in bulk studies@44#. A Buckingham term acts betwee
-

-

4
l

r

e
e

o

two nitrogen atoms of any different molecules,VB(r )
5A exp(2ar)2C/r6, where the parametersA, a, C are
taken asA5125 502.7 kJ mol21, a53.461 136 Å21, and
C51641.2749 kJ Å6 mol21. Multipolar interaction is mod-
eled as four partial Coulombic charges located on the m
lecular axis. The two positive charges 0.373qe are located at
60.847 Å, the two negative charges20.373qe at
61.044 Å, withqe the electronic charge. This description
complete with the intermolecular N-N bond length, 1.094
The same potential was used in previous thermodynam
investigations on (N2)13 and (N2)55 clusters@12,14#. A time
step of 5 fs is used in classical isoergic MD simulations.
each total energy, the first 5 ns are retained for thermal
tion. The calculation of the largest Lyapunov exponentl is
then initiated, and from the subsequent 10 ns of the sim
tion, only the last 5 ns are kept for an average value ofl.

Besidesl calculated as a function of total energy for th
(N2)n cluster (n53 or 13!, we also evaluate a translation
exponentlT by propagating a 6n-vectordcT(t) according to
the following equation, similar to Eq.~4!:

ddcT

dt
5S 0 1

A 0D dcT , ~16!

where the 3n33n matrix A is given in Eq.~A1!. Sincel
T

refers only to a subset of coordinates in phase space, it isnot
a Lyapunov exponent in the usual sense, but simply a qu
tity that we hope to be sensitive only to the translation
motion of the molecules.

All simulations are performed with zero total linear an
angular momenta. To interpret our results physically, sev
geometrical parameters are calculated. First, we calculate
root mean square bond length fluctuationd, also known as
the Lindemann parameter. Moreover, an orientational or
parametera is defined as

a5^cosu&5 lim
T→`

1

TE0

T 1

n (
i 50

n

ei~ t !•ei~0!dt. ~17!

We have plotted in Fig. 1 the largest Lyapunov exponenl
and its translational analogl t for the trimer (N2)3 . At very

FIG. 1. Largest Lyapunov exponents in the (N2)3 cluster. The
global Lyapunov exponentl ~open circles! and its translational
restrictionlT ~full squares! are plotted against the total energyE in
classical molecular-dynamics simulations.E is given in kJ mol21.
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5646 PRE 58F. CALVO
low energy, both exponents grow very softly from 0 a
have very close values. When the energy reachesE0.
23.1 kJ mol21, the curves becomes divergent andl
abruptly rises whilelT still increases linearly. Finally, in-
flections occur for bothl and lT , but at a much lower
energy forl than for lT ~near 21.5 kJ mol21). Further-
more, this inflection is much sharper forl. In the whole
range of energies we havel>lT . From Fig. 2 we see tha
the lowest energy region is ordered, both orientationally a
translationally. The orientational order is lost atE;E0 , and
d rises slightly. However, the translational order is lost
E.21.7 kJ mol21. Thus it appears that the Lyapunov e
ponentl is mostly sensitive to the freedom of molecul
rotation. Also essential is the contribution of the rotation
terms~matricesC, D, andE) in the Jacobian]F/]c.

We observe in Fig. 3 similar qualitative behaviors of t
Lyapunov exponents. From the variations of botha and d
presented in Fig. 4, we see that the system is fully rigid
low temperature, and that the centers of mass remain vib
ing around the icosahedral geometry. In this region, the m
lecular axes also keep vibrating inside cones. Both Lyapu
exponents l and lT have very low values. AtE5
241 kJ mol21, the loss of orientational order is accomp
nied by a strong rise inl, but not inlT . When the cluster
melts, nearE5228 kJ mol21 (d rises over 0.1!, lT roughly
reaches a maximal value. But, again, no signature of mel

FIG. 2. Orientational order parametera ~open circles! and Lin-
demann parameterd ~full squares! versus total energy for (N2)3 .

FIG. 3. Largest Lyapunov exponents in the (N2)13 cluster. The
global Lyapunov exponentl ~open circles! and its translational
restrictionlT ~full squares! are plotted against the total energyE in
classical molecular-dynamics simulations.E is given in kJ mol21.
d

t

l

t
t-
-
v

g

is seen on the variations ofl. On the contrary,l seems to
have reached the same upper limit, at a much lower ene
however. These variations are to be compared to thos
other van der Waals clusters such as LJ clusters, wherl
does not seem to show such an upper limit.

From these results, it appears thatlT can be a fairly good
approximation to the real exponentl. This is especially true
in the lowest- and highest-energy regimes. When the ene
is low enough, the rotational degrees of freedom are ne
frozen, and contribute poorly to the divergence ofdcT : both
exponentsl andlT are small. After the release of the inte
nal degrees of freedom,l soon reaches its upper limit whil
lT still increases regularly with energy. Once the solid-liqu
transition has occurred, the rotational degrees of freed
evolve on a much faster time scale than the translatio
ones. As a consequence, fluctuations of the curvature on
potential-energy surface also become faster. In the limit
the high-energy regime, when the cluster is in its liquidli
state, the matrixA changes with the same rate as the oth
matrices of the Jacobian. This kind of ‘‘averaging effec
causes the parametric instabilities created by these fluc
tions@28# to be of the same magnitude for bothdc anddcT ,
hence producing similar values forl andlT in this limit.

Therefore, the degree of chaos seen from the larg
Lyapunov exponent in small nitrogen clusters is primar
driven by the orientational degrees of freedom. It shou
however, be noted that, due to the separation between tr
lational and rotational degrees of freedom in such clust
the whole Lyapunov spectrum should carry much more u
ful information than the largest exponent alone. In particu
the Kolmogorov entropy might be a good parameter for
vestigating both phase transitions exhibited by these syste
Further insight would probably be gained by investigati
other systems which do not exhibit an orientational tran
tion, such as carbon dioxide clusters@12–14#.

IV. CONCLUSION

We have illustrated a method for computing Lyapun
exponents in Hamiltonian systems made of linear molecu
from numerical experiments with classical molecula
dynamics simulations. In our study, we have only calcula
the largest Lyapunov exponentl. The other exponents an
even the whole Lyapunov spectrum can be estimated in
same way with a regular orthonormalization procedure. T

FIG. 4. Orientational order parametera ~open circles! and Lin-
demann parameterd ~full squares! versus total energy for (N2)13.



o
a-
nd
io
ea

m
nt
ill
th

-
s
in

rg
ls
w
n

e
n-
al

b
am
he
e

ly
he
la
te

ho

-
v

du

A.
p

o-

s

nt

of
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present formulation explicitly uses the leapfrog algorithm
Fincham@43# to propagate the current trajectory in microc
nonical MD. This approach is rather straightforward, a
avoids the use of more intricate methods such as quatern
@45#, which are somewhat redundant in the case of lin
molecules. Recently, Dullweberet al. proposed a new
method for dealing with molecular dynamics of syste
made of rigid bodies@46#. This method seems more efficie
and faster than the standard quaternions scheme, and w
developed to calculate Lyapunov exponents. This will be
subject of another communication.

We have computedl versus total energy in small nitro
gen clusters made of 3 and 13 molecules. These cluster
known to display a solid-solid phase transition, happen
with the release of the molecular orientational degrees
freedom, embryonic of the bulk solid-plastic transition@12#.
The orientational disorder occurs at a much lower ene
than the energy required to isomerize or to melt. It has a
been shown that this phenomenon may be characterized
thermal changes. Here we have observed that the Lyapu
exponent sharply rises when the orientational degrees
freedom are released, but also that it is not sensitive to m
ing. Moreover,l seems to reach an upper limit at high e
ergy. This is a very peculiar behavior for van der Wa
clusters, but was seen to occur in ionic clusters@3#. Thus the
specific dynamical behavior of molecular clusters may
suitably investigated using Lyapunov exponents as par
eters and probes of some phase transitions, even if all t
mal changes may not necessarily be associated to chang
l.

The method developed in this work could be effective
used in the computation of Lyapunov exponents in ot
systems of linear molecules, and interacting through a c
sical many-body potential, possibly including more intrica
effects such as Axilrod-Teller forces@27#. The application to
clusters, of course, but also to periodic systems such as t
investigated by Posch and Hoover@30# and by Kwon and
Park @29# is rather straightforward. It would then allow in
vestigations on more realistic models, in order to impro
our understanding of how the chaotic properties change
ing a phase transition.
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sité Paul Sabatier, and the MENESR.

APPENDIX: CALCULATION OF THE JACOBIAN

In this appendix, we illustrate the five 3n33n matrices
A, B, C, D, andE of the 12n312n Jacobian, Eq.~15!. We
assume the existence of a potential-energy functionV such
that the total force acting on the sitea of moleculei ~located
at r i

a) can be written asf i
a52]V/]r i

a . From Eq.~10! we
find a straightforward expression forA, identical to the
atomic case:

Ai j 52
1

mi
(
a51

si ]2V

]qi
a]qj

, ; i , j ~A1!
f
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with qi any of the 3n coordinates of the center-of-mass p
sitions$r i%5$xi ,yi ,zi%. B can also be easily derived as

Bi j 52
1

mi
(
a51

si ]2V

]qi
a]kj

, ; i , j ~A2!

with kj any of the 3n coordinates of the axes orientation
$ei%5$ei

x ,ei
y ,ei

z%.
To find expressions forC and D, we must develop the

variations ofg i
' whenc changes. Considering at the prese

time only the variations ofgi @see Eq.~7!#, we define the
3n33n matricesC0 andD0 such that

C0
i j 52 (

a51

si

di
a ]2V

]qi
a]qj

, ; i , j , ~A3!

D0
i j 52 (

a51

si

di
a ]2V

]qi
a]kj

, ; i , j . ~A4!

To obtain the variations ofg i
' from those of$r j% and $ej%,

we use the definition Eq.~8!:

dg i
'5dgi2eid~gi•ei !2~gi•ei !dei . ~A5!

It is useful to treat simultaneously the variations from$r j%
and$ej%, and to pose the 3n36n matrix M05(C0uD0). We
also define four 3n33n block diagonal matrices (M j ), 1
< j <4, by

M j5S L j
1 0

�

0 L j
n
D , ~A6!

where then 333 matrices (L j
i ), 1< j <4, 1< i<n, are de-

fined as

L1
i 5S ei

x 0

ei
y

0 ei
z
D , ~A7!

L2
i 5S ei

x ei
y ei

z

ei
x ei

y ei
z

ei
x ei

y ei
z
D , ~A8!

L3
i 5~gi•ei !1, ~A9!

L4
i 5S gi

xei
x 0

gi
yei

y

0 gi
zei

z
D . ~A10!

We also introduce the 3n36n matrix M55(0uM31M4).
With all these definitions, one can show that the variations
$g i

'% induced by those of$r i% and$ej% are bound through the
linear relationship~at first order of perturbation!:
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S dg i
'

A

dgn
'
D 5~M02M1M2M02M5!S dr1

A

drn

de1

A

den

D . ~A11!

It remains to study the contribution of the Lagrange mu
plier term on the right-hand side of Eq.~12!. Equation~13! is
used in practice to computeg i at time t, from ui(t2dt/2)
andei(t). The knowledge of the multipliers$g i% allows us to
add the contributiong idei to the variations ofddui /dt, un-
der the form of the 3n36n matrix M65(0uG), with G the
3n33n diagonal tensor:

G5S L5
1 0

�

0 L5
n
D , where L5

i 5g i1. ~A12!

Finally we have obtained the explicit formulation of the m
tricesC andD:

~CuD!5S 1

Ji
D ~M02M1M2M02M5!1M6 , ~A13!
.

e
na

J

.

-

where the factor (1/Ji) must be applied to the rows 3i 22,
3i 21, and 3i for 1< i<n.

To find an expression for the block diagonal matrixE, we
can differentiate Eq.~14! to finally obtain

E522S L6
1 0

�

0 L6
n
D ,

where

L6
i 5S ei

xui
x ei

xui
y ei

xui
z

ei
yui

x ei
yui

y ei
yui

z

ei
zui

x ei
zui

y ei
zui

z
D . ~A14!

All the matrices shown above can be calculated analytic
for any effective two-body atom-atom intermolecular pote
tial. Their expressions are valid at current timet. Since the
leap-frog algorithm propagates the velocities from timet
2dt/2 to time t1dt/2, the valuations of the matrixE re-
quires the extra valuation of the rotational velocities
time t.
ev.
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