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Largest Lyapunov exponent in molecular systems: Linear molecules
and application to nitrogen clusters
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The computation of the largest Lyapunpwexponent is carried out for a Hamiltonian system made of linear
molecules. The internal rotational degrees of freedom are described with unit vectors parallel to molecular
axes. As an application, we investigate with classical molecular dynamics the behawiowitti internal
energy in small nitrogen clusters with 3 and 13 moleculesharply rises when the molecular rotational
degrees of freedom are released. However, no particular changes are observed at the solidlike-rigidlike phase
transition. Thus the amount of chaos in the cluster seems mainly governed by the orientational degrees of
freedom.[S1063-651X98)01411-1

PACS numbg(s): 05.45+b, 05.70.Fh, 36.46-c

I. INTRODUCTION sition, at least in the macroscopic linji28—30. However,
because of relaxation phenomena, the computation of
As an intermediate stage between the microscopic antyapunov exponents is particularly difficult near a phase
bulk levels, clusters offer very peculiar chemical and physi-change[29].
cal behaviors. In particular, the study of phases and phase Whenever a cluster melts, it may undergo an intermediate
changes in these systems has led in the past decade to a faiff@te which is a finite-size analog to the relaxation phenom-
good understanding of how melting occurs far below the€na in bulk systems, known as dynamical coexiste3de:
thermodynamic limit. However, most of the earliest investi-'N & range of energies or temperatures, the cluster perma-
gations were carried out on simple atomic models such as tHeNtly fluctuates back and forth between its solidlike and
Lennard-Joneé_J) or Morse potentials. These potentials areI|qU|dI|ke phases. Coexistence in clusters is not a spatial no-

ideal for carrying out numerical experiments, and the physic:li'on related to phase separation, but is characteristic of how

of bulk fluids has been testing many theories and model%neltlng occurs at f!mFe Size, th_e clus_ter being entirely solid-
with them. More recently, interest was granted to many other'ke or entirely liquidike at a given time. Of course, as the

. ' o . L . size increases, the temperature range of coexistence gets nar-
kinds of cluster species, ranging from iorfiit—3], metallic

rower to become finally reduced to the melting temperature.
[4], fullerenes[5,6], water[7,8], and many others. Up 10 rparefore, calculating Lyapunov exponents in clusters is
now, mostly Fuchs and co-workers have paid attention Q¢ mych easier than in periodic systems. Studies on bulk

van der Waals molecular clusters from the thermodynami¢natier have clearly demonstrated the different behaviors of
point of view [9-14]. These systems may exhibit very par- | yapunov exponents across a phase transiti@8—
ticular phases. For instance, large (RFclusters N~10°)  30,32,33. However, the finite size of clusters and the strong
show two distinct ordered crystal-like phases in differentsensitivity of the phase change upon the characteristics of the
ranges of temperaturfd 0], whereas smaller sizeN¢- 10) potential-energy surfaces make it hard to find such general
show featureless caloric curvg8]. Besides this solid-solid |aws at the level of a few atoms or molecules. Rare-gas clus-
phase transition, an embryonic solid-plastic transition wasers display very different variations of both the largest
found in nitrogen clustergl2]. The loss of orientational or- Lyapunov exponent and the Kolmogorov entropK at
der in (N;)13 (near 10 K was not found in (C@),3, even  melting, depending on their sizgl16,19-21,23,2p lonic
though both clusters have identical Structure atT=0  clusters may undergo several hierarchical levels of melting
[12,14. [2,3], and display original variations of with energy, which
Among the various tools and parameters proposed to inhave not been fully explained yg&]. Using numerical simu-
vestigate the dynamics and thermodynamics of clusters, thations on Lennard-Jong&J) and metallic systems and the
Lyapunov exponents and the related Kolmogorov entropysemianalytical results of a recent thedi34], Mehra and
have been the subject of several reppits—-28. Defined as  Ramaswamy28] have investigated the respective contribu-
the exponential rate of convergence or divergence of neightions of local and parametric instabilities, especially near
boring trajectories in the phase space, the Lyapunov expamelting. In small clusters containing only a few atoms, local
nents are a measure of the degree of chaos in a dynamidalstability induced by negative curvature on the potential-
system. Since there is a large difference in rigidity and or-energy surface is mainly responsible for chaos and exponen-
dering between a solid and a liquid, one can expect thesgating trajectorie§18,19. In larger systems and in the bulk,
numbers to be used as a probe of the solid-fluid phase traparametric instability induced by the fluctuations of positive
curvature seems to dominate over the forfs].
The method mostly used for calculating Lyapunov spectra
*Electronic address: florent@yosemite.ups-tlse.fr in numerical experiments is the tangent space method inde-
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pendently developed by Shimada and Nagishigt¥ and by  In the “tangent space,” one just has to follow the time evo-
Benettinet al.[36]. This method allows us to compute the lution of the én-vector §i(t) and to renormalize it periodi-
largest Lyapunov exponents;} of a dynamical system with cally. Starting withm=#6n orthogonal vector§5;(0)}, a
dimensionn=m, given its partial differential equations. Gram-Schmidt orthonormalization procedure can be used to
Other methods, focusing on the Kolmogorov entropy, havdurther estimate then— 1 remaining largest Lyapunov expo-
been proposed in the cluster commurity]. Up to now, the  nents{\;} of the system. Obviously, the numerical effort is
tangent space method has been applied either to dissipatiegéso proportionally larger. In the following, we will only
systems such as the Lorenz mod8I7] or to atomic or focus on the maximal exponelt=X\; .

nuclear system$16,21-27,29,30,33and XY-like models For a Hamiltonian system interacting through the classical
[32], among others. Most of the time, and due to the heavyotential energy functiorV depending on the coordinates
numerical cost involved in the computation, only the largestr;}, 1<i=<n, and with{p;} the n linear momenta anfim;}
exponenix; was seeked. This is generally sufficient to char-the masses, we havey/={r;,p;} and F()={dH/ap;,

acterize chaoticity in a quantitative way. —dH/ori}={p;i/m;,—aV/ar;}, so that Eq(3) becomes
The purpose of this paper is to extend the tangent space

approach to molecular systems where not only translational doy o T

degrees of freedom are present, but also rotational degrees of dt =M o oy )

freedom for each molecule. Here we focus on linear mol-

ecules; three-dimensional entities will be the subject of awith T=(T;;) the 3nXx3n dimensional diagonal matrix
following paper, the technique and basic equations beingvhose elements are given By >3- >=T3-13-1= T3 3
rather different with respect to the linear case. The paper is=1/m;, M the 3nx3n second derivative of the potential,
organized as follows. In the next section, we develop thevamely the Hessian matrMijzaZV/aqiaqj, andO0 the 3n
standard method to include molecular rotation in the compux 3n null matrix. Such an atomic system can be computa-
tation of Lyapunov exponents. Then we illustrate it with thetionally studied with the standard tools of molecular dynam-
study of phase changes in nitrogen clusterg)(Nvith n  ics (MD). Commonly used are the Verlet algorithi39] to

=3 and 13. The results are given and discussed in Sec. llbolve the equations of motion for the “physical”’ main tra-

Finally, we conclude and summarize in Sec. IV. jectory, Eqg.(1), and a fourth-order Runge-Kutta scheme to
solve Eq.(3) for the “fiducial” tangent trajectory. Let us
Il. METHODOLOGY now come to the problem of molecular systems, more pre-

) ) . cisely made of linear molecules.
Before coming to molecular systems, we start this section \ye consider a cluster made oflinear molecules. Each
be recalling the main results of the tangent space methog,gjeculei with massm; containsn; atoms or entities, and
used to calculate the Lyapunov exponents in a Hamiltoniagye assume intramolecular bonds to be of fixed length. The
system. We consider a system mtlimensionless particles, ‘mqjlecular motion is split into the translation of the center of
evolving through the classical Hamiltons’ equations of Mo-y 355 and the rotation about the center-of-mass contributions
tion. In condensed form, these equations can be written "P40]. If moleculei hass; interaction sites located ofr?},

the following way: l=<as<s;, and if the forcef* acts on site{*, the torquer,

dys about the center of massis
gt -~ FW), () i
7= (r¥=ry)xfe (5)
where ¢y is a 6n-vector of the phase space akds a non- e '

linear function depending o at timet. Obviously, solving ) _ ) N
Eq. (1) also requires an initial conditios(0) for . By yvhlle the total force acting on is fi=2,f. In Fhe follow-
definition, the largest Lyapunov exponenis the exponen- NG we denote by the potential-energy function such that

tial rate of divergence of two initially close trajectories: i = —dV/dr{". We take advantage of the linearity of the
molecules by using the fact that both angular veloeityand
N i 1I syt @ torques; must be perpendicular to the molecular agis By
=lim lim —Ini——7, iting ré—r.=d® '
o 00 T [84(0)] writing r{*—r;=d*e for all i and «, we have[41]

where|| = (| ) is a metric on the phase space drid
is the associated scalar product. Of course, rigorouslye-  \where we have definegl as

pends on the choice of the initial conditigf(0) of the ref-

erence trajectory, but this difficulty can be eliminated for Si

ergodic Hamiltonian systeni88]. In the following, we will g= > dfff. ()
assume ergodicity of our systems. a1

To avoid numerical difficulties due to the exponential di- \ote that we can replacg by its component perpendicular
vergence, we differentiate E@L) to readily obtain the time to & without affecting Eq.(6), so thatr,=e X g+ with
evolution of the vectoBy(t) itself: e ! '

L=g—(g- ) 8
doy oF 9 =g—(g-e)g ()

T m//(w' €

The first-order equations of translational motion p46]
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where J; is the momentum of inertia angl is a Lagrange

FIG. 1. Largest Lyapunov exponents in the,jNcluster. The

multiplier to constrain bond lengths. The numerical propagaglobal Lyapunov exponenk (open circles and its translational

tion of vectors{g} and{u;} from timet— 5t/2 to 5t lead, via
a first-order Taylor expansion, to

i(t) 8t=—2u;(t— 6t/2) - (1), (13

which is equal, to the same order of approximation, to

(1) dt=—uf(t)t. (14)

An efficient way to solve numerically Eq&)—(12) has been

proposed by Fincharf43]. It is based on a leap-frog algo-

rithm which allows the direct estimation of at timet using
Eqg. (13).
To calculate the largest Lyapunov expongnif the clus-

ter, we first define the current point of the phase space,
y={r;,&,v;,u;}. Similar to the atomic case, we write Egs.

(9)—(12) in condensed formiy/dt=F (). Suppose that a
variation 8¢(0) is imposed onys at timet=0. The time
evolution of ¢ is still governed by Eq(3), but we have to
illustrate the JacobiafF/d according to Eq99)—(12). We
easily see that

(19

T o o

0
o"F_ 0
oy | A

© © o r
m O© - o

cC D

restriction\ 1 (full square$ are plotted against the total enerigyn
classical molecular-dynamics simulatiofisis given in kJ mot 2.

two nitrogen atoms of any different molecule¥g(r)
=Aexp(—ar)—CIt5, where the parameter8, a, C are
taken asA=125502.7 kJmol', «=3.461136 A, and
C=1641.2749 kJAmol 1. Multipolar interaction is mod-
eled as four partial Coulombic charges located on the mo-
lecular axis. The two positive charges 0.8{&re located at
+0.847 A, the two negative charges-0.373), at
+1.044 A, withqg, the electronic charge. This description is
complete with the intermolecular N-N bond length, 1.094 A.
The same potential was used in previous thermodynamical
investigations on (B) 3 and (N,) 55 clusters[12,14. A time
step of 5 fs is used in classical isoergic MD simulations. At
each total energy, the first 5 ns are retained for thermaliza-
tion. The calculation of the largest Lyapunov exponkgris
then initiated, and from the subsequent 10 ns of the simula-
tion, only the last 5 ns are kept for an average valua .of
Besides\ calculated as a function of total energy for the
(N,), cluster =3 or 13, we also evaluate a translational
exponenit 1 by propagating a B-vectordi+(t) according to
the following equation, similar to Ed4):

d5¢T_(0 1

ot A o) s (1o

where A,B,C,D,E are hX3n matrices to be determined where the 31X 3n matrix A is given in Eg.(Al). Since)\T

and1l is the 3 X 3n identity matrix. The explicit derivation

refers only to a subset of coordinates in phase spacendtis

of these matrices is performed in the Appendix. As men- | yapunov exponent in the usual sense, but simply a quan-
tioned above, it is in principle possible to follow simulta- tjty that we hope to be sensitive only to the translational

neously the time evolution of Torthogonal vector$si;}

motion of the molecules.

in order to find all Lyapunov exponents. We expect that 14  a|| simulations are performed with zero total linear and
+2n of them would be zero due to conservation of the totalangular momenta. To interpret our results physically, several
energy, linear, and angular momerts@ven constants of the geometrical parameters are calculated. First, we calculate the
motion), but also due to the constraint of intermolecular oot mean square bond length fluctuatiénalso known as

bond lengths if Lagrange multipliers

Ill. APPLICATION TO SMALL NITROGEN CLUSTERS

In this section we illustrate the method formalized above
to compute the largest Lyapunov exponent in clusters made

the Lindemann parameter. Moreover, an orientational order
parameterr is defined as

1(T1g
ffo n 2 &0-e(Odt. (17

a=(cosf)= lim

T—oo

of 3 and 13 nitrogen molecules. The potential chosen to
model the interaction between,Mnolecules was previously We have plotted in Fig. 1 the largest Lyapunov exponent
used in bulk studief44]. A Buckingham term acts between and its translational analag, for the trimer (N)3. At very
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FIG. 2. Orientational order parameter(open circley and Lin- FIG. 4. Orientational order parameter(open circlesand Lin-
demann parametef (full square$ versus total energy for (5. demann parametef (full square$ versus total energy for (N3.

low energy, both exponents grow very softly from 0 andis seen on the variations af. On the contraryh seems to
have very close values. When the energy reachgs have reached the same upper limit, at a much lower energy,
—3.1 kImol'!, the curves becomes divergent and however. These variations are to be compared to those in
abruptly rises whilex still increases linearly. Finally, in- other van der Waals clusters such as LJ clusters, wkere
flections occur for bothh and Ny, but at a much lower does not seem to show such an upper limit.
energy for\ than for At (near —1.5 kJmol'?). Further- From these results, it appears thatcan be a fairly good
more, this inflection is much sharper far. In the whole approximation to the real exponext This is especially true
range of energies we hawe=\;. From Fig. 2 we see that in the lowest- and highest-energy regimes. When the energy
the lowest energy region is ordered, both orientationally ands low enough, the rotational degrees of freedom are nearly
translationally. The orientational order is losteat-Eq, and  frozen, and contribute poorly to the divergenceSgk; : both
o rises slightly. However, the translational order is lost atexponents\ and\; are small. After the release of the inter-
E=—1.7 kJmol'l. Thus it appears that the Lyapunov ex- nal degrees of freedom, soon reaches its upper limit while
ponent\ is mostly sensitive to the freedom of molecular )\ still increases regularly with energy. Once the solid-liquid
rotation. Also essential is the contribution of the rotationaltransition has occurred, the rotational degrees of freedom
terms(matricesC, D, andE) in the JacobiamF/di. evolve on a much faster time scale than the translational
We observe in Fig. 3 similar qualitative behaviors of theones. As a consequence, fluctuations of the curvature on the
Lyapunov exponents. From the variations of betrend §  potential-energy surface also become faster. In the limit of
presented in Fig. 4, we see that the system is fully rigid athe high-energy regime, when the cluster is in its liquidlike
low temperature, and that the centers of mass remain vibragtate, the matriXA changes with the same rate as the other
ing around the icosahedral geometry. In this region, the momatrices of the Jacobian. This kind of “averaging effect”
lecular axes also keep vibrating inside cones. Both Lyapunogauses the parametric instabilities created by these fluctua-

exponents\ and Ay have very low values. AtE= tions[28] to be of the same magnitude for bafly and sy,
—41 kImol'l, the loss of orientational order is accompa- hence producing similar values farand\ in this limit.
nied by a strong rise iin, but not in\y. When the cluster Therefore, the degree of chaos seen from the largest

melts, neaE=—28 kJmol ! (S rises over 0.1, Ay roughly  Lyapunov exponent in small nitrogen clusters is primarily
reaches a maximal value. But, again, no signature of meltingriven by the orientational degrees of freedom. It should,
however, be noted that, due to the separation between trans-

T T T T T T T 009 ] lational and rotational degrees of freedom in such clusters,
06~ TSR the whole Lyapunov spectrum should carry much more use-
I o000 " 1 ful information than the largest exponent alone. In particular,
L o . _ the Kolmogorov entropy might be a good parameter for in-
0.4 o . - vestigating both phase transitions exhibited by these systems.
T . . . Further insight would probably be gained by investigating
-0 - 7 other systems which do not exhibit an orientational transi-
’<0 ol o 1 tion, such as carbon dioxide clusté¢f2—14.
B (N2)13 ]
. T IV. CONCLUSION
0 |- ees@ie” R . We have illustrated a method for computing Lyapunov

L.
—40

-30 ‘ —20 i i i i
Energy (kJ mol™) exponents in Hamiltonian systems made of linear molecules,

from numerical experiments with classical molecular-
FIG. 3. Largest Lyapunov exponents in the,j] cluster. The ~ dynamics simulations. In our study, we have only calculated
global Lyapunov exponerk (open circley and its translational ~the largest Lyapunov exponekt The other exponents and
restriction\ 1 (full square$ are plotted against the total energyn  even the whole Lyapunov spectrum can _be estimated in the
classical molecular-dynamics simulatiofsis given in kJ mol %, same way with a regular orthonormalization procedure. The
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present formulation explicitly uses the leapfrog algorithm ofwith g; any of the 31 coordinates of the center-of-mass po-

Fincham[43] to propagate the current trajectory in microca- sitions{r;} ={x;,y;,z}. B can also be easily derived as

nonical MD. This approach is rather straightforward, and

avoids the use of more intricate methods such as quaternions 13 52V

[45], which are somewhat redundant in the case of linear Bij=— = PO

molecules. Recently, Dullwebeet al. proposed a new ia=1 47 ok;

method for dealing with molecular dynamics of systems . . . )

made of rigid bodie§46]. This method seems more efficient With k; any of the 31 coordinates of the axes orientations

and faster than the standard quaternions scheme, and will hel=1{e.e e’}

developed to calculate Lyapunov exponents. This will be the To find expressions fo€ and D, we must develop the

subject of another communication. variations ofg;- wheny changes. Considering at the present
We have computed versus total energy in small nitro- time only the variations oy [see Eq.(7)], we define the

gen clusters made of 3 and 13 molecules. These clusters ad® X< 3n matricesCy, and D, such that

known to display a solid-solid phase transition, happening

with the release of the molecular orientational degrees of N S e, L

freedom, embryonic of the bulk solid-plastic transitidr®]. Ci=- 2 dif' ——, Vij, (A3)

The orientational disorder occurs at a much lower energy «=t - 9Gidq;

than the energy required to isomerize or to melt. It has also

been shown that this phenomenon may be characterized with

thermal changes. Here we have observed that the Lyapunov

exponent sharply rises when the orientational degrees of

freedom are released, but also that it is not sensitive to melty | 1. i the variations of* from those of{r;} and{e]},

ing. Moreover,A seems to reach an upper limit at high en- L s ! !

o . : we use the definition Eq8):

ergy. This is a very peculiar behavior for van der Waals

clusters, but was seen to occur in ionic clus{@is Thus the

specific dynamical behavior of molecular clusters may be

suitably investigated using Lyapunov exponents as paran ;s useful to treat simultaneously the variations fr¢my}

eters and probes of some phase transitions, even if all ther- d{e}, and to pose therBx 6n matrix Mo=(Co|Dg). We

;\nal changes may not necessarily be associated to changesz %0 define four Bx3n block diagonal matricesM), 1

The method developed in this work could be effectively =) =% PY
used in the computation of Lyapunov exponents in other

Vi, ] (A2)

Sj 2
- oV
Dy=-2 d . Vil (A4)
a=1 (9q|a5kl

897 =g —ed(g-e)—(g-e)de. (A5)

1
systems of linear molecules, and interacting through a clas- L] 0
sical many-body potential, possibly including more intricate M= , (AB)
effects such as Axilrod-Teller forc¢&7]. The application to 0 LD

clusters, of course, but also to periodic systems such as those !

investigated by Posch and Hoovig80] and by Kwon and . i . .

Park[29] is rather straightforward. It would then allow in- }/iv:e(;e then 3x3 matrices ), 1<j=<4, 1=<i=n, are de-
vestigations on more realistic models, in order to improve edas
our understanding of how the chaotic properties change dur- .

ing a phase transition. & 0
Ly= e . (A7)
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APPENDIX: CALCULATION OF THE JACOBIAN
- : : - : L3=(g-e)1, (A9)
In this appendix, we illustrate the fivenX 3n matrices
A, B, C, D, andE of the 1hx 12n Jacobian, Eq(15). We gl 0
(It}

assume the existence of a potential-energy functicsuch
that the total force acting on the siéeof moleculei (located L= g’e’ . (A10)
atr{) can be written a${*=—4gV/adr*. From Eq.(10) we

Z 2
find a straightforward expression fok, identical to the 0 9i€i
atomic case: We also introduce the 18<6n matrix Ms=(0|M3;+M,).
15 sy With all these definitions, one can show that the variations of
Ai=—— . Vil (A1)  {g;} induced by those dfr;} and{e;} are bound through the

ij : . . . : ;
Mi «=1 9q;*dq; linear relationshipat first order of perturbation
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orqy
59+ :
9' o,
=(My—MM;Mq—Ms) se (A11)
89y -
oe,

It remains to study the contribution of the Lagrange multi-
plier term on the right-hand side of E.2). Equation(13) is
used in practice to computg, at timet, from u;(t— 6t/2)
ande(t). The knowledge of the multipliedsy;} allows us to
add the contributiony; 6e, to the variations ofidu; /dt, un-
der the form of the 8X6n matrix Mg=(Q|T"), with T the
3nX3n diagonal tensor:

0
r= ,
0 LD

where Li=y1.  (A12)

Finally we have obtained the explicit formulation of the ma-
tricesC andD:

[

(C|D):( )(MO_MlMZMO_M5)+M61 (A13)

F. CALVO
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where the factor (1) must be applied to the rowsi 3 2,
3i—1, and 3 for 1<i=<n.

To find an expression for the block diagonal matixwe
can differentiate Eq(14) to finally obtain

L 0
E=-2 ,
n
0 LD

where

X, (X X, Y X, 2

Uy Ui Eu;

L= | e ety en (A1)
z, X z,y 7,2
iUy Ui ey

All the matrices shown above can be calculated analytically
for any effective two-body atom-atom intermolecular poten-
tial. Their expressions are valid at current titneSince the
leap-frog algorithm propagates the velocities from time

— 0t/2 to time t+ 6t/2, the valuations of the matri re-
quires the extra valuation of the rotational velocities at
timet.

[1] A. Heidenreich, I. Schek, D. Scharf, and J. Jortner, Z. Phys. 017] C. Amitrano and R. S. Berry, Phys. Rev. Lei8, 729(1992.

20, 227(1991; J. P. Rose and R. S. Berry, J. Chem. Pi9g;.
517(1992; 98, 3246(1993; 98, 3262(1993.

[2] J. Luo, U. Landman, and J. Jortner,Rfysics and Chemistry
of Small ClustersVol. 158 of NATO Advanced Study Institute
Series B: Physicedited by P. Jena, B. K. Rao, and S. Khanna
(Plenum, New York, 1987 p. 155.

[3] F. Calvo and P. Labastie, J. Phys. Cheml@®, 2051(1998.

[4] R. Poteau, F. Spiegelmann, and P. Labastie, Z. Phy€), D57
(1994.

[5] S. G. Kim and D. Tomaek, Phys. Rev. Leti72, 2418(1994).

[6] D. J. Wales, J. Chem. Phy%01, 3750(1994.

[7] D. J. wales and I. Ohmine, J. Chem. Ph98, 7257 (1993.

[8] C. J. Tsai and K. D. Jordan, J. Chem. Ph§@. 6957 (1993.

[9] A. Boutin, J.-B. Malillet, and A. H. Fuchs, J. Chem. Ph98,
9944 (1993.

[10] A. Boutin, B. Rousseau, and A. H. Fuchs, Europhys. L.
245 (1992.

[11] A. Boutin, A. H. Fuchs, M.-F. de Feraudy, and G. Torchet, J.
Chem. Phys105 3671(1996.

[12] J.-B. Maillet, A. Boutin, and A. H. Fuchs, Phys. Rev. Lé&t6,
4336(1996.

[13] J.-B. Maillet, A. Boutin, and A. H. Fuchs, Mol. Simul9, 285
(1997.

[14] J.-B. Maillet, A. Boutin, S. Buttefey, F. Calvo, and A. H.
Fuchs, J. Chem. Phy409 329 (1998.

[15] T. L. Beck, D. M. Leitner, and R. S. Berry, J. Chem. Ph§4.
1681(1988.

[16] R. J. Hinde, R. S. Berry, and D. J. Wales, J. Chem. P&§s.
1376(1992.

[18] D. J. Wales and R. S. Berry, J. Phys2B, L351(1991).

[19] R. J. Hinde and R. S. Berry, J. Chem. Ph98, 2942(1993.

[20] R. S. Berry, J. Phys. Cherf8, 6910(1994.

[21] S. K. Nayak, R. Ramaswamy, and C. Chakravarty, Phys. Rev.
E 51, 3375(1995.

[22] S. K. Nayak and R. Ramaswamy, J. Phys. Ché®). 9260
(1994.

[23] G. M. Tanner, A. Bhattacharya, S. K. Nayak, and S. D.
Mahanti, Phys. Rev. b5, 322(1997.

[24] V. M. F. Morais and A. J. C. Varandas, J. Phys. Ch&#,.
5704(1992.

[25] Y. Yurtsever, Europhys. LetB7, 91 (1997).

[26] F. Calvo, J. Chem. Phy4.08 6861(1998.

[27] C. Chakravarty, R. J. Hinde, D. M. Leitner, and D. J. Wales,
Phys. Rev. B56, 363(1997).

[28] V. Mehra and R. Ramaswamy, Phys. Revs@& 2508(1997).

[29] K.-H. Kwon and B.-Y. Park, J. Chem. PhyH)7, 5171(1997).

[30] H. A. Posch and W. G. Hoover, Phys. Rev38, 2175(1989.

[31] D. J. Wales, Mol. Phys78, 151 (1993.

[32] P. Butera and G. Caravati, Phys. Rev38, 962 (1987.

[33] A. Bonasera, V. Latora, and A. Rapisarda, Phys. Rev. [Z&ft.
3434(1995.

[34] L. Casetti, R. Livi, and M. Pettini, Phys. Rev. Left4, 375
(1995; L. Casetti, C. Clementi, and M. Pettini, Phys. Rev. E
54, 5969(1996.

[35] I. Shimada and T. Nagashima, Prog. Theor. Plgfs. 1605
(1979.

[36] G. Benettin, L. Galgani, and J.-M. Strelcyn, Phys. Revl4
2338(1974.



PRE 58 LARGEST LYAPUNOV EXPONENT IN MOLECULAR . .. 5649

[37] Y. Froyland and K. H. Alfsen, Phys. Rev. AR9, 2928 [42] K. Singer, A. Taylor, and J. V. L. Singer, Mol. Phy&3, 1757

(19849. (19779.
[38] H. D. Meyer, J. Chem. Phy84, 3147(1986. [43] D. Fincham, Daresbury Laboratory Quarterly for MD and MC
[39] L. Verlet, Phys. Rev159 98 (1967). Simulations, Report No. 121984, p. 47.
[40] H. Goldstein Classical MechanicéAddison-Wesley, Reading, [44] H.-J. Bchm and R. Ahlrichs, Mol. Phys5, 1159(1985.

1980. [45] D. J. Evans, Mol. Phys34, 317 (1977).

[41] M. P. Allen and D. J. TildesleyComputer Simulations of Lig- [46] A. Dullweber, B. Leimkuhler, and R. McLachlan, J. Chem.
uids (Oxford University Press, Oxford, 1987 Phys.107, 5840(1997.



